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A solution is presented for three-dimensional, incompressible, non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution is obtained for a conventional impeller with
straight blades but with the inducer vanes renmved and the impeller

~ blades extended upstream paralLel to the axis of the impeller. By supe~
position of solutions two additional examples are obtained for different
ratios of coqressor flow rate to impeller tip speed. The three-

4 dimensional solutions sre compared with corresponding two-dimensional
solutions and it is concluded that, at least for the type of impeller
geometry investigated, two-dimensional solutions can be conibinedto
describe the three-dimensional flow in rotating impellers with suffic-
ient accuracy for engineering analyses.

mODUCTION

As an aid to better understanding of flow conditions in rotating
impeller passages, methods of analysis have been developed in the past
for potential nonviscou5 flow. In order to achieve solutions with a
reasonable expenditure of effort, all methods are based on two-
dimensional assqtions, in that the flow is restricted, by assumption,
to specified flow surfaces in space. Either of two types of surface
are usua~y assumed for the flow: first, the mean blade (or passage)
surface on which flow conditions vary from hub to shroud but are con-
si&red constant in the circumferential direction (axial-symmetry solu-
tions, references 1 and 2), or, second, surfaces of revolution on which
flow conditions vary from one blade to.the next, but normal to which
the flow conditions are considered constant (blade-to-blade solutions,
references 3 and 4).

If the streamlines of an axial symmetry solution are used to
generate surfaces of revolution around th”eaxis of the impeller, the

. totality of the blade-to-blade solutions on these surfaces of revolution

*
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constitute & qyasi-three-dimensionalsolution (reference 5) because the
solutions indicate variations in flow conditions throughout the impeller
passage. However, because the flow is constrained to surfaces of revo-
lution, the solution is not three &bnensional in the exact sense of the
word. No complete three-dimensional solutions for rotating tmpel.ler
passages exist in the Mteratme, and a solution has therefore been
obtained at the l?.ACALewis laboratory. The solution is presented in
this report and is compared with the results of axial-symmetry and
blade-to-blade solutions in order to evaluate these two-dimensional
methods Of ~lySiS.

The three-dimensional solution was obtained for incompressible non-
viscous flow in a rotating impeller-passagewith straight bkdes and
with the inducer vanes located
position of solutions, results
rate to impeller tip speed.

.

GENERAL

far upstream of the hpeller. By super.
are obtained-for several ratios oI?flow

t.

METHOD OF ANALYSIS
.

A partial differential equation for three-dimensional flow in a
rotating impeller passage is.devekpedfiom considerations of continuity
and absolute irrotational fluid motion.

Assuq tions. - The fluid is assumed to be inviscid and incompres-
sible. The flow is assumed to be steady relative to the rotating
impeller passage, and in the absence of viscosity the absolute motion
of the fluid is assumed to be irrotational. It is assumed that the
phenomenon being investigated, that is, the deviation of three-
dimensional flow from the restrict- motion of two-dimensional solu-
tions, is qualitatively the same for compressible and incompressible
solutions. This deviation is a perturbation resulting primsrlly from
rotation of the impeller~ and in reference 6 it is shown that at least
for two-dimensional solutions this type of~erturbation is independent
of compressibil~ty,which affects only the average velocity.

Cylindrical coordinate system and velocity components. - The cylin-
drical coordinates R, e, and Z relative to the Impeller are shown in.
figure l(a). (All s@bols are defined in appendix A;) These coordl-
nates are dimensionless, the linear coordinates R and Z having been
dividedby the impeller tip radius (so that R is equal to 1.0 at the
impeller tip).

The absolute velocity Q has components ~, Qg, and ~ in the

R, 19,and “Z directions, respectively (fig.”~(a)).””These ;elocltles
i

are dimensionless, having been divided by the impel+er tip speed (so
that, for example, the dimensionless-bladespeed at any radius R is &
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.
equal to R).
expressed a8 a

.

If W is the velocity of
ratio of the impeller tip

3

the fluid relative to the impeller,
speed, then

we =Qe -

Potential

R (1)

function m. - For absolute tiotational fluid motion

where the
satisfies

from which

and

Vxc=o (2)

bar tidicates a vector quantity. A potential function cp
eqmtion (2) identically if defined by

‘a= v~

acp
~=QR

la9Fe=Q

a~= Q

z

Differential equation of flow. - From continuity

so that,

which in

V.q,= ()

from equation (3),

V2Cp.o

cylindrical coordinates becomes

NUMERICAL PROCEDURE
.

(3)

(3a)

(3b)

(3C)

(4a)

(4b)

A numerical procedure-is outlined for the solution of the partial
differential equation.(4) for flow in arotating impeller passage withz
special type of geomet~.

4
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Preliminary Considerations

NACA TN 2806

Special type of hpeller geometry. - The three-dimensional solutions
presented are for a straight-bladed.impeller of conventional design
except that the inducer vanes are removed and the straight impeller
blades sre extended indefinitely upstream parallel to the axis of the
compressor. This idealized entrance con~tion along with straight
blades results in substantial simplificationof the numerical procedure.

Superposition of solutions. - As a result of the special type of
impeller geometry @st discussed, the boundary conditions for flow
through a rotating impelLer are eqpal to the sum of the boundary condi-
tions for zero flow through the rotati~ impeller -d for finite flow
through the stationary impeller. Therefore, because the boundary oon-
ditions can be added tid because the differential equation (4) is
line=, the velocity potential T for flow through the rotating impeller
passage caa be qressed a.s_

(5)

where ~ satisfies equation (4) and the boundary conditions for the
rotating impeller with zero net through flow and ~ satisfies the same

equation but for the boundary conditions associated with flow through
the stationary impeller. The solution for ~1 is called”the “eddy-flow

solution” and corresponds to ideal flow conditions in the rotating
impeller with the throttle closed so that no through flow occurs. The
solution for T2 is called the “through-flow solution” and, for the

special type of impeller geometry being considered, this solution is
axially symmetric and corresponds to flow with zero whirl through an
annulus with the same hub-shroud profile and no impeller blades. solu-
tions for various ratios of flow rate to impeller tip speed are obtained
directly

The

for various values of k in eqpation (5).

Eddy-Flow Solution

eddy-flow solution for the rotating impeller passage with zero—
net through flow is considered first.

—

Trarrsformationof coordinates. - It is convenient for purposes of
the numerical solution by rebx.a.tionmethods to transform the RZ-plane
to one on which the coordinatesare.the streamlines ~ and-velocity
potential lines ~ for flow twough the comptiessor‘iulus without
blades. Because the M and shroud contours are streamlines in the
ItZ-plane,these contours become straight parallel lines in the
~q-plane. In terms of thenew transformed coordinates, equation (4b)
for the eddy-flow potential Cp=”becomes (appendix B)

9
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.

. (6)

where the stiscript 2 refers to the solution for sxially symmetric
flow through the compressor annulus with no blades or, which is the
same thing, through the stationary impeller pass~e of the special type
considered in this report.

%
z The new coordinate system introduces two additional velocity compo-

nents (appendix B)

.

1

and an angle q defined by

()QR
tana2= —

Qz 2

(7a)

(7b)

(8)

all of which are shown in figure l(b). From this figure it is seen
that

Qt =QZcos~+~sin~

and

Qq=QRcos~-Qzsti~’

(9a)

(%)

or, conversely,

*.QfSti~+QqCOS~ (lOa)

and

QZ=Q~COS%VQt P~% (lob)

. Boundary conditions. - For the eddy-flow solution of equation (6)
the boundary conditions that must be satisfied for the special type of
impeller geometry considered in this report are:.
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(1) The
impeXLer and
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flow direction must be tangent to the hub and shroud in the
diffuser so that Qn is zero, or, from equation (7%),

(U)

(2) Along the blade the relative flow is tangent to the b“ladesur-
face so that for straight radial blades the relative tangential velocity
We is zero and from equationB (1) and (3b)

az9e =R

(3) Boundaries are established.in the diffuser on meridional planes
extending from the blade tips. For a rotating impeller with no through
flow the radial velocity component is zero on these boundaries so that
the potential function is constant along radial lines on these surfaces.

a

Variations in velocity potential ~ with Z at the impe3Jsr tip of
constemt radius indicate the presence of a vortex sheet shedding from the b
trailing edge of the blade and passing downstream. It is assumed that
the strength of this sheet is weak and canbe ignored in the solution of
equation (6). For impeller blades with constant tlp radius the variation
in work input from hub to shroud at the impeller tip is negligible and
the assumption therefore appears to Ye reasonable. The Joukcwskl condi-
tion at the blade tip is automatically satisfiedby conditfon (2).

(4) The domain of the solutions is extended in the upstream and
downstream directions until flow conditions are uniform in a plane normal
to the direction of through flow. For the eddy-flow solution this con-
dition is achieved when (Q1)~ is zero, t~t is, when ~/~~ is zero,

eve-here on a plane normal to the ~ coordinate.

(5) The idealized inlet of the special impeller geometry considered
in this report results in symmetry of flow about the mean plane between
blades in the rotatti- impeller with-no through flow. The flow is
directed normal.to this plane and ~ is therefore everywhere constant

(zero) on it.

Relaxation solution. - The differential equation (6) is solvedby
relaxation methods (reference 7) to satisfy the boundary conditions just
described. The velocity components are then deternd.nedby equaticms (3)
and (7) in finite difference form. For the numerical exsmples of this
report, a three-point system was used for expressing the differential
equations in finite difference form.
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●

Flow paths. - Any three velocity components determine the flow &Lrec-
tion at a point so that flow paths relatiye to the impeller passage can

? be determined from the velocity components QR} We, -d ~, oi ~ We>
%

and ~. On the hub, shroud, and blade surfaces the path lines can be
constructed graphically from ties of constant flow direction on these
surfaces.

Accuracy. - For the numerical examples of this report, the impeller
N channel ticludes a total of S400 grid points at which the velocity poten-
84 tial was relaxed to a unit change in the ftith decimal. (Because q~

is constant on the mesn plame snd the flow is symmetrical about this
plane, the nuniberof grid points at which it was necessary to relax is
reduced to 2400.)

In order to check the accuracy of the grayhical construction of the

* path lines, these lines were obtained on a plane normal to the through-
flow direction far upstream of the impeller where a direct two-dimensional
solution for the stream function is lmown and valid. Figure 2(a) compares

. the path lines with the streamlines. It is noted that the graphically
constructed path lines agree well with the streamlines. It should be
pointed out, however, that the path-ldne spacing is not sufficiently
accurate to be indicative of the velocity distribution. h figure 2(b)
the velocities obtained from the three-dimensional solution for the
velocity potential are compared with the velocities obtained from the
two-tiensional solution for the stream function. The comparison tidi-
catea much better agreement in the velocity distributions tham was indi-
cated by the path-line spacing in figure 2(a).

A check on the accuracy of the three-dimensional solution will be
given in connection with a discussion of the numerical examples. This
check indicates approximately the same accuracy that is shown by the
comparison of velocities in figure 2(b).

Combined Solutions

After the eddy-flow solution has been obtained, various percentages
of a &rough-flow solution may be added to obtati solutions for”different
ratios of compressor flow rate to impeller tip speed.

Through-flow solution. - The through-flow solution is obtained by
methods outlined in reference 1, for example. As already discussed, the
velocity potential-sfor the two types of solution can be added or, as

. indicated by partial derivatives of v in equation (5), the velocity
components thmselves can be added directly. The latter procedure avoids
the necessity of computing the distribution of 92 from the distribution

.
of st”reamfunction determined by reference 1.
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~lOW path. - The procedure for graphically determining the flow path
for the combined solutions is Identicalwith that outlined for the eddy-
flow solution.

NUMERICAL EXMELES

Three-dimensional solutions for flow through an impeller with
straight blades “sadwith the inducer vanes located far upstream of the
impellerare presented for:. (1) zero flow through the rotating impeller
passage, (2) flow through the stationary impeller passage, and (3) com-
binations of (1) and (2) for various ratios of through flow to impeller
tip speed.

Enpeller Geometry

The impeller geometry for the numerical examples is the ssme as
that in references 1 and 4 with the inducer vanes located far upstream
of the impeller. The hub-shroud profile of the impeller is described
in figure 3. The blade spacing is 32.800 as in reference 4.

The results o~the solutions are presented on the channel surfaces
and on the nine meridional planes indicated in fi~e 4(a). The ~,~
coordinates on the meridional planes are shown in figure 4(b). The lines
of conBkt ~ are spaced at intervals correspondingto equal increments
of the ~ coordinate-usedin reference 4.

Solution for Zero Net Flow Through Rotating JinpellerPassage

Velocity potential W1. - Lines of constant velocity potential on

the meridional planes are shown in figure 5. The c-enterplane E (see
fig. 4(a)) is not shown because, as discussed previously,91 is zero

everywhere on this plane. Note that lines of constant CPl intersect the

hub-shroud profile at right angles, as requiredby equation (Xl). The
meridional velocity component must be directed normal to the lines of
constant 91 in the meridional planes and has magnitudes inversely pro-

portional to the ltie spa”cings.

Velocity components. - Velocity components of the eddy-flow solution
are shown in figures 6 to 8. These velocity components are directly
related by equation (3) to the local partial.derivativesof the velocity
potential PI given in figure !5. For-the impeller geometry be@ inves-

tigated, all these eddy-flaw velocity components wouldbe neglected by
axial-symmetry-typesolutions (reference 1).

.

.

IN

f!-

.

.



NACA TN 2806 9

Lines of coutant (Q1)~ on the meridional planes sre shown in

figure 6. This velocity component of the eddy-flow solution is tangent
to the streamlines (constant q), and therefore to the velocities, of the
axially symmetric flow through the stationary impeller. The velocity
component (Ql)

i
has maximum values on the blade surfaces (pkes A

and A’) snd is ero on the center plane E. This velocity component
also becomes zero upstream and downstream of the impeller proper.

Lines of constant velocity component (Ql)v are shown on the

meridional planes in figure 7. This velocity component of the eddy-flow
solution is normal to the stresmlties, and therefore to the velocities,
of the flow through the stationary impeller. The velocity cumponent

(Ql)~ ~S u- ~ues on the blade surfaces and is zero on the center

plane E. This velocity component must also be zero along the hub and
shroud boundaries, and becomes zero downstream of the impeller. Note
that the velocity component (Ql)q would be canpletely neglected in two-

dimensional solutions on surfaces of revolution (reference 4) generated
by streamlines of axial-symmetry-type solutions.

Lines of constant tangential velocity component (W~)e relative to

the impeller are shown in figure 8. For the impeller geometry investiga-
ted, this velocity component has maximum values on the center plane E
and is zero on the blade surfaces. Negative values of (WI)@ indicate

flow across the meridional planes in the direction opposed to impeller
rotation (into the page), and positive values of (Wl)6 indicate flow

across the meridional planes in the direction of rotation (out of the
page). From contin~ty considerations the integrated weight flow into the
page (exclusive of the fluid that remains in the diffuser) must equal the
titegrated weight flow out of the page. These integrations have been
carried out for the center plane E and weight flws agree within

2* percent. This agreement indicates approximately the same accuracy as

that obtatied from the integrated weight flows across the center ltie in
figure 2(b). Thus it seems reasonable to conclude that the error through-
out the domain of the three-dimensional solution is not greater than that
indicated by the velocities in figure 2(b).

Path lines. - Path lines of fluid particles on the passage surfaces
are shown for the eddy-flw.solution In figare 9. The fluid remains in
the impeller passage and rotates in the opposite direction to that of the
impeller.

Solution for Flow Through Stationary IinpellerPassage

Flow through a stationary impeller with straight blades has zero
tangential velocity and is equivalent to flow through the annulus formed
by the hub and shroud surfaces. In refermce 1, it is shown that for
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incompressibleflow the distributions of stream function and velocity
.

components in -themeridional plane for flow through an s.anulusare the
same as the distributions for axially symmetric flow through a rotating
impeller with an infinite number of straight impeller blades. Therefore,
example 11 of reference 1 is used in this report as the solution for flow
through the stationary impeller passage.

Streamlines. - Streamlines for flow through the stationary impeller
passage are shown in figure 10. These lines are also the ~ coordinates
(fig. 4(b)) used in the relaxation solution for the eddy flow.

Velocity distribution. - For flow through the stationary impeller
passage, (Q2)G, (W2)6, and (~)n are zero. Lines of constant velocity

(Qz)f (equal to Qz) are shown &I a meridional plsme in figure u. AS

for ~he eddy-flaw solution, this velocity is expressedas a ratio of the
tip speed of the rotatin~ impeller, and the solutiogpresentedwas
o%tained for (~)~ eqpal to 0.3429 far upstream of the iqeller proper.

The distribution of (Q2)~ is the same for all meridional planes.

Flow direction. - Lines of constant flow direction q are shown on

a meridional plane in figure 12. These values of ~ canbe used to com-
pute the velocity components QR and ~ by equation (10).

Solutions Yor Flow Through Rotating Impeller Passage

Solutions for various ratios of flow rate to impeller tip speed are
obtainedby superposition of various percentages (k in equation (5)) of
the through-flow solgtion on the eddy-flow solution. Either the veloc-
ity potential or!the velocity components may be superposed. Two solu-
tions are presented for flow through the rotating impelle~with values
of the axial inlet velocity Qz (equal tm–(Q2)~) upstream of the

impe~er equal to 0.1372 and 0.3429, that is, for k equal to 0.4 and
1.0, respectively.

Solution for k = 0.4. - Path lines of fluid particles on the sur-
faces of the impeller channel are shown in figure 13 for 40 percent of
the through-flow solution supewosed on the eddy-flow solution. Path
lines on the hub and on the blade surface faced In the direction of rota-
tion are shown in figure 13(a); path lines on the shroud and on the blade
surface opposed to the direction of rotation are shown in figure 13(b).
A composite plot of these path lines is shown in figme 13(c).

For this solution the flow rate through the rotating @eller is not
sufficient to eliminate (by superposition) all the reverse flow result-
ing from the negative velocities (Q1)~ of the eddy-flow solution (see

fig. 7(a)). This condition corresponds to the eddy flow that is attached

.

—

,“

.

k
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.
to the face of the blade in the direction of rotation for two-dimensional
solutions on surfaces of revolution (references 4 and 6, for example).

. Unlike the two-dimensional solutions, however, the fluid in the reverse
flow of the three-dhensional solution does not remain in the hrpeller
but eventually leaves as indicatedby the spiral path lines emanating
from the stagnation point on the hub of the impeller.

The locus of stagnation points indicated on the blade surface in
figure 13(a) corresponds to the downstream stagnation petit associated

R with the eddy flow of a two-dimensional solution. For the three-
2 dimensional solution in figure 13(a),.upstresm stagnation points occur

at the hub and shroud only. However, along the dot-dash line between
these stagnation points the velocity component QE is zero so that this

line corresponds .tothe upstream stagnation pointsassociated with the
eddy flow of a two-dimensional solution. Path lines on the shroud sur-
face in figure 13(b) converge to the upstream stagnation point. This

. convergence indicates that, as the path lines approach the stagnation
point, the fluid leaves the shroud surface and passes into the interior
of the passage.

4
Solution for k = 1.0. - Path lines of fluid particles on the sur-

faces of the impeller charnel are shown in figuxe 14 for 100 percent of
the through-flow solution superposed on the eddy-flow solution. The
conditions for this solution are the same as those for the two-dbensional
solutions given in references 1 and 4. Path lines on the hub and on the
blade surface faced in the direction of rotation are shown in figure 14(a);
path lines on the shroud and on the blade surface opposed to the direction
of rotation are shown in figure 14(b). A composite plot of these path
lines is shown in figure 14(c).

COMPARISON OF TWO- AND THREE-DIMENSIONAL SOLUTIONS

The results of the three-dimensional solution are compared with two-
dimensional solutions on the mean passage surface extenMng from hub to
shroud, on the mean surface of revolution, and on the shroud surface.
Only the eddy-flow solutiolm are compared because the contribution of
through flow to the velocity components is the same for both the two-
and three-dimensional solutions. Thus the velocity ,componentsto be
compared are components of the perturbation velocity caused by the rota-
tion of the impeller, and the relative importance of errors in these
components is reduced when the known, primary through flow is added.&

Mean passage surface. - Because, for the type of impeller geometry
. investigated, the three-dimensional eddy flow has no velocity coqonents

in the mean passage surface extenting from hub to shroud (plene E,
fig. 4(a)), the velocity components in this plane are solely determined

.
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by, and therefore agree with, the axial-symmetry two-dimensional solu-
tion. The axial-symmetry solution, however, completely neglects the
relative tangential velocity W~, which for the three-dimensional solu-
tionhasmimumvdues on the mean plane (fig. 8(d)).

For impelJ_erswith curved blades, the relktive tangential velocity
component reaches maximum values on a mean flow surface between the
blades. If, as for high-solidlty blade rows, this surface is not much
different from the geaaetric mean surface between blades, then the flow
is nearly two dtiensional on the mean passage surface and the flow on
this mean surface Is ap~roximately describedby axial-symmetry solutions
like those of reference 1. This conclusion is reachedby Ruden in
reference 8.

Mean surface of revolution. - The velocity components Q~ and We

for the two- and three-dimensional solutions are compared on the mean
surface of revolution in figures 15 and 16. The agreement for Q in

f
figures 15(a) and 15(b) is excellent, and tk-agreement for We in fig-

ures 16(a) and 16(b) is also excelJ_entnear the impeller tip, although
the two-dimensional solution (fig. 16(b)) introduces relatively small
positive values of We not found”for the three-dimensional solution in
the region upstream of the contour line for We eq-1 to zero.

The slip factor, defined as the ratio of average absolute tangential
velocity at the impeller tip to the tip speed of the impelJsr, depends on
the distribution of We at the impeller tip and is eqml to 0.7892 for
the three-dimensional solution compared with 0.8142 for the two-
dimensional solution on the mean surface of revolution (reference 4).

The velocity component ~ of the three-dimensional solution is
plotted in figure .17. This velocity component is normal to the mean sur.
face of revolution and is completely neglectedby the two-dimensional
solution.

Shroud. - The velocity components Q~ and We for the two- and

three-dimensional solutions are compared on the shroud surface in fig-
ures 18 and 19. (The two-dimensional solution on the shroud surface was
obtained from correlation equations, developed”in reference 4, using, for
‘rstandardvalues” of velocity, the velocities of the-two-dimensional,
eddy-flow solution on the mean plane.) The agreement for Q

!!
in fig-

ures 18(a) and18(b) is good, but the agreement for .We in figures 19(a)

and 19(b) i-spoor, except in a limited region near the jmpeller tip.
From simple physical considerations the agreement-for Q

t
and We on

the hub is expected to be shqilar to the agreement on the shroud, except
that We will.have large positive values instead of’the large negative

.

values on the shroud. On the hub and shroud surfaces the ielocity com-
ponent Q7 is zero for both the two- and three-dimetisionalsolutions.
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.

Sulmnaryof Conlparisons. - A sunmwcy of the comparisonsbetween the
two- and three-dimensional solutions that are discussed in this report

* is given in the folkwfng table:

Velocity Agreement
component

Mean passage Mean surface 35ibor shroud
surface of revolution surface

Q~ good good good

we poor good poor

% I good I poor I good

. It is concluded that on the flow surfaces investigated the velocity com-
ponents Qt, We, and ~ ~ee for the two- and three-ikhnensionalsolu-

. tions disc&sed in this-report, except: (1) We on the hub, shroud, and

mean passage surface, and (2) ~ on the mean surface of revolution.

If quasi-three-dimensionalsolutions are obtatiedby the proper
combination of two-dhensional axial-symmetry and blade-to-blade solu-
tions (reference 5), good agreement with the exact three-dimensional
solution is indicated by good agreement on all surfaces of revolution.
This agreement has already been discussed for the hub, shroud, and mean
surfaces of revolution. For intermediate surfaces the table of compari-
sons suggests that the agreement will always be good for Q , will be

f
pro~essively better for We as the mean surface of revolution is
approached, and will be progressively better for ~ as the hub and,
shroud are approached. Because Qt is the velocity component of prtie

hnportsnce, it is concluded that, at least for the type of tipelller
investigated in this report, two-tiensional solutions can be cmhined
to describe the three-dimensional flow in rotating impeller passages with
sufficient accuracy for engineering analyses.

SUMMARY OF RESULTS AND CONCLUSIONS

A solution is presented for three-dhensional, incompressible,non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution is obtained for a conventional impeller with straight
blades but with the Inducer vanes removed and the tipeller blades
extended upstream parallel to the axis of the impeller. By superposition

. of solutions twb additional examples are obtained for diFferent flow
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rates through the rotating impeller. Of particular interest is the fact
that at low compressor flow rates the fluid in the reverse or eddy-flow
region does not remain permanently in the impel.ler”passage,as is the
case for two-dimensional solutions on surfaces of revolution,but, after
spiraling around, eventually leaves the impeller. In other respects the
three-dimensionalsolutions are compared with correspondingtwo-
dimensional solutions and it is concluded that, atileast for the type
of impeller geometry investigated,two-dimensional solutions can be
combined to describe the three-dimensionalflow in rotating impellers
with sufficient accuracy for engineering analyses. In particular it is
concluded that:

1. On the mean surface of revolution the velocity components,
except the component normal to the surface, agree for the two- and
three-dimensionalsolutions.

2. On the hub and shroud surfaces the relative tangential velocity
component does not agree for two- and three-dimensionalsolutions,bu&-
the other velocity components do.

.

.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, July 3, 1952

.

.
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APPENDIX A

SYMBOLS

The following symibolsare used in this report:

A,A’,B,B’,... meridional planes (fig. 4(s,))

Q

R,13,Z

a

w

.

c%

t,T

CP

Subscripts:

1

2

R,e,Z,&q

percentage of through-flow solution V2

absolute velocity, expressed as ratio of impeller tip
speed

cylindrical coordinates (fig. l(a)), linear coordinates
expressed as ratios of impeller tip radius

relative velocity, expressed as ratio of hrpeller tip
speed

angle, figure l(b) and equation (8)

velocity-potential and stream function, respectively, for
incompressible flow through hub-shroud annulusj used as
coordinate system in ~q-plane, equations (Bl) and (B2)

velocity potential, equation (3)

rotating impeller with zero net through flow (eddy-fluw
solution)

stationary
example,
upstresm

components

impeller with through flow
through flow iS such that
of hupeller)

in R,9,Z,~,~ directions,

(for numerical
QZ equals 0.3429

respectively
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APPENDIX B

NACA TN 2806

.

.
TRANSFOWION FROM RZ- TO ~q-PLM’E

It is convenient for purposes of solution by relaxation methods to
transform the I/Z-planeto one on which the
function ~ and the velocity potential ~
pressor amnulus without blades. The stream
continuity condition if defined as

mor&nates are the stresm
for flow through the com-
punction q satisfies the

!!

a3z=- R(Q2)R

(Bl)

and the velocity potential ~ satisfies the
if defined as

irrotationality condition

= (Q2)R

= (Q2)Z

(B2)

In terms of the transformed
tives of equation (4b) become

~, T coordinates, the partial deriva-

(B3)
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From equations (Bl) through (B3), equation (4b) becomes

But,

(QR2+~2); =Q22

6
and from cmtinuity

.

and for irrotational flow

(=82=0
so that equation (B4) becomes

(B4)

[6)

Equation (6) is the partial clifferential equation for the distribution
of ~ in the ~,q,e coordinate system.

This new coordinate system introduces two new velocity components
Q~ and QV, which are related to the radial and axial velocity com-
ponents by equation (9). Combining equations (3), (9), and (Bl) to
(B3) @.VeS

(7a)

“ (7b)
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velocitycomponents.All que,ntIties ere dimensionless.Line& coordinates
ere meaeuredin u.nitsof impellertip radius; velocity components ere
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Figure 2. - comparison of re-suits obtained ficm two- and Wree-dlmenslml solUtlonE.
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to Impeller axis in region Or uniform axlel velooity far upstream.
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Dlreotion of rotation

(b) LJnes of oonsta.nt velocity relative to rot&g impeller.

Figure 2. - “Concluded. Comparison of results obtained from two- and three-dimensional aoluticms.
Plane normal tu impeller axis in region of uniform axial velooity far upstream.

.

.

.
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